

Journal of Information Technology in Civil Engineering and Architecture ISSN 1674-7461,CN 11-5823/TU

《土木建筑工程信息技术》网络首发论文

题目: 基于 BIM 的复杂空间异形钢拱桥拱肋施工校核研究

作者: 卢吉,高畅,陈飞,覃亚伟,万文杰

网络首发日期: 2021-02-26

引用格式: 卢吉,高畅,陈飞,覃亚伟,万文杰.基于 BIM 的复杂空间异形钢拱桥拱肋

施工校核研究. 土木建筑工程信息技术。

https://kns.cnki.net/kcms/detail/11.5823.TU.20210226.1454.002.html

网络首发: 在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容,只可基于编辑规范进行少量文字的修改。

出版确认:纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国学术期刊(网络版)》出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)》是国家新闻出版广电总局批准的网络连续型出版物(ISSN 2096-4188, CN 11-6037/Z),所以签约期刊的网络版上网络首发论文视为正式出版。

发时间: 2021-02-26 16:33:11

首发地址: https://kns.cnki.net/kcms/detail/11.5823.TU.20210226.1454.002.html

土木建筑工程信息技术

基于 BIM 的复杂空间异形钢拱桥拱肋施工校核研究

卢吉1,2,高畅1,陈飞1,覃亚伟1,万文杰2

(1. 华中科技大学 a. 土木与水利工程学院, 武汉 430074; b. 湖北省数字建造与安全工程技术研 究中心, 武汉 430074; 2. 武汉市市政建设集团有限公司, 武汉 430056)

摘 要: 复杂异形拱桥拱肋的空间姿态控制是保证工程质量的关键问题之一,对其设计图纸参 数、实际施工中的各点位坐标的校核是保障施工质量的前提。本文针对以上问题,引入 BIM 技术与数学建模,提出了一种复杂空间异形钢拱桥拱肋的校核方法。文章首先完成了对钢拱肋 设计图纸拱轴线节点坐标的数学建模校核,在此基础上以 tekla 软件建模辅助校核拱段尺寸; 然后对施工中拱段监测点坐标进行了数学建模校核,最后在 tekla 中模拟施工,建立实际工程 模型,拟合实际拱轴线分析整体误差。同时本文将该方法应用于武汉某大桥,证实了该校核方 法的实际可行性。

关键词:钢拱桥;空间异形钢拱肋; BIM 技术;坐标空间变换;拟合轴线方程

中图分类号: TU17

文献标识码: A

Research on Construction Check of Arch Rib of Complicated Space

Special-shaped Steel Arch Bridge Based on BIM

LU Ji^{1, 2}, GAO Chang ¹, CHEN Fei ¹, QIN Ya-wei ¹, WAN Wen-jie²

(1.a. School of Civil and Hydraulic Engineering; b. Hubei Engineering Research Center for Digital Construction and Safety, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Wuhan Municipal Construction Group Co., Ltd., Wuhan 430056, China)

Abstract: The control of the spatial attitude of the arch ribs of the complex shaped arch bridge is one of the key issues to ensure the quality of the project. The verification of the design drawing parameters and the coordinates of each point in the actual construction is the prerequisite to ensure the construction quality. Aiming at the above problems, this paper introduced BIM technology and mathematical modeling, and proposed a method for checking the arch ribs of a complex space special-shaped steel arch bridge. The paper first completed the mathematical modeling and verification of the arch axis node coordinates of the steel arch rib design drawings, and then used tekla modeling to assist in the verification of the arch size; then, mathematical modeling of the arch monitoring point coordinates during construction Check, and finally simulated the construction in tekla, established the actual engineering model, and analyzed the overall error by fitting the actual arch axis. At the same time, this method was applied to a bridge in Wuhan, which proved the practical feasibility of the verification method.

Keywords: Steel arch bridge; Special shaped steel arch rib; BIM Technology; Coordinate Space Transformation; Fitting Axis Equations

[[]作者简介] 卢吉(1983-), 男, 工程师, 博士研究生在读, 主要研究方向: 土木工程与力学; 通讯作 者简介: 高畅(1997-), 男,硕士研究生在读,主要研究方向: 土木工程与力学。

Journal of Information Technology in Civil Engineering and Architecture

1 引言

随着桥梁技术不断发展,如今拱桥的形式日新月异,钢箱提篮拱桥就是其中常见类型之一^[1]。它的主要承力构件拱肋通常在空间上旋转倾斜,具有造型优美且受力效果良好的特点,被广泛应用于中小跨度桥梁^[2],如图 1 所示。

图 1 某提篮钢拱桥效果图

提篮钢拱桥空间姿态复杂,导致其设计图纸中相关参数可能存在误差并增加了图纸校核的困难。同时,施工过程中制造、安装等工序也会造成误差并随施工逐步累积^{[3][4]}。因此,需进行施工前图纸校核、施工过程中拱段安装质量的实时校核以及施工完成后成桥质量的校核^[5],并采取相应措施削减施工误差。

对于钢拱桥的施工控制及校核,已有研究多 凭已知施工误差值进行有限元计算从而获得精度 较好的拱肋调整方案^{[6][7]},但仍具有有限元计算过 程复杂、难以实现实时施工误差的校核等不足。

因此,本文运用较为先进且表达直观的 BIM 技术,结合 matlab 等工具,对拱桥拱肋的设计图 纸、施工质量及成桥质量三方面校核问题进行研 究,提出了一种对复杂空间异形钢拱肋的校核方 法。

2 钢拱桥拱肋校核需求分析

为保障钢拱桥拱肋的建设质量,首先需对拱 肋设计图纸中的参数予以校核,并在后续施工中 实时校核各拱段误差及最终工程质量,具体需求 如下。

(1) 施工前钢拱肋设计图纸校核

①拱肋轴线节点坐标:该参数往往通过在 CAD 中旋转平面曲线并人工拾取来获得。平面曲 线的复杂性、对曲线的旋转及大量的拾取点坐标 造成了该项可能的误差,需要校核。

②拱段尺寸: 拱段尺寸中拱段纵向上下边长 获取方式类似①, 也存在相应误差隐患,需要校 核。

(2)施工中及施工完成后拱肋施工误差校核 ③施工中拱段监测点实时坐标:理想情况下, 拱肋施工中,设各拱段端部的控制点位为监测点 最易于控制工程质量。但为了避免焊接将该点位 烧毁,实际监测点位往往会在控制点位基础上沿 拱段方向移动一段距离。因此,需对监测点坐标 进行校核。

④成桥轴线方程相关参数: 拱肋施工完成后, 需要对整体成桥质量进行评价。由各监测点坐标 拟合得实际拱肋轴线方程,对比设计方程,可较 好的判断成桥质量。因此,需对成桥轴线方程相 关参数进行校核。

钢拱桥拱肋校核具体需求框架如图 2。

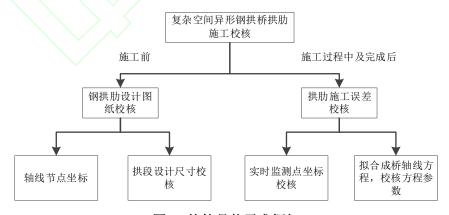


图2 校核具体需求框架

3 基于 BIM 的复杂空间异形钢拱桥拱肋施 工校核流程及原理分析

上述校核需求部分可转化为数学问题,从而 编程计算快速得出。但诸如拱段上下边设计尺寸、 实际拱肋的节点坐标值等数据仅依靠数学计算难 以获得,故引入 BIM 技术模拟相关流程间接读取 该值。整个校核方法具体相关原理如下。

3.1 原理分析

1、BIM 技术相关功能

BIM 技术以协同和交互的方式对建筑信息进

Journal of Information Technology in Civil Engineering and Architecture

行建模、存储、管理,提供了一个在数字化三维 环境中检索、分析和处理建筑信息的平台。

(1) BIM 模型管理

BIM 技术为工程人员提供了便捷的模型管理平台。

tekla 等 BIM 平台具有尺寸编辑、空间变换以及将 matlab 计算得出的点位坐标导入为辅助点等功能,可将理想 BIM 模型快速编辑得到实际工程 BIM 模型。

(2) 关键信息获取

钢拱桥 BIM 模型包含桥梁全生命周期信息要素,且读取便捷快速。

拱段尺寸、实际轴线节点坐标等不易得出的 关键信息,可通过建立 BIM 模型从中快速读取。 后续还可将数据批量导出至 matlab 工具中进行计 算。

2、坐标变换及轴线拟合

复杂空间异形钢拱桥拱肋轴线一般由平面曲 线在空间坐标系中旋转得到,如图 3。因此,旋转 后拱肋上点的坐标理论值的计算可转化为数学问 题。

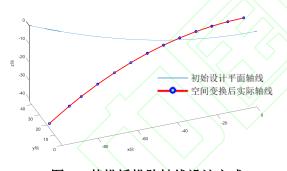


图 3 某拱桥拱肋轴线设计方式

(1) 基于 matlab 的坐标变换

在空间坐标系中进行数学建模,首先将各拱段需校核的所有坐标组成坐标矩阵,再乘以变化

矩阵进行坐标变换。

以理想轴线节点坐标为例,首先以拱桥各节点跨度方向坐标组成向量 x=[x1,x2,x3.....xn],并分别代入轴线初始平面方程 y=f(x),及 z 坐标 0,再扩充全为 1 的行向量,得到轴线节点坐标矩阵 A,后续乘以相应变换矩阵得理想轴线节点坐标矩标矩阵。

$$A = \begin{bmatrix} x_1 & x_2 & x_3 \cdots & x_n \\ f(x_1) & f(x_2) & f(x_3) \cdots & f(x_n) \\ 0 & 0 & 0 \cdots & 0 \\ 1 & 1 & 1 \cdots & 1 \end{bmatrix}$$
(2-1)

可在 matlab 中编写上述计算过程。在面对同类工程时,可通过修改 f(x) 的方程,快速完成该坐标变换程序的应用。

(2) 基于坐标变换的轴线拟合

对于实际拱轴线方程的拟合,可利用 BIM 平台导出实际轴线各节点坐标至 matlab,同上述步骤建立坐标矩阵,并经反向的坐标空间变换得近似于同一平面的各点坐标,随后可通过 matlab 自带拟合工具进行后续轴线方程拟合。

3.2 校核方法具体流程

1、钢拱肋设计图纸校核

(1) 基于数学建模的轴线节点坐标校核

根据 3.1 节可知: 在 matlab 中编程,由拱轴 线平面方程及各节点跨度方向坐标数学建模,经 空间变换得轴线节点坐标理论值,从而对设计图 纸轴线节点坐标进行校核。

(2) 基于 BIM 的拱段尺寸校核

将轴线节点坐标理论值导入 tekla,结合各段截面尺寸,以梁命令建立拱肋理想 BIM 模型。在模型中获取拱段尺寸理论值,从而对拱段尺寸进行校核。

具体流程如图 4 所示。

Journal of Information Technology in Civil Engineering and Architecture

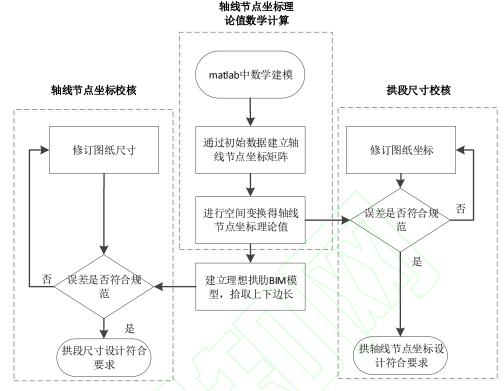


图 4 图纸轴线节点坐标、拱段上下边长误差校核流程图

2、拱肋施工误差校核

(1) 实时监测点坐标校核

考虑监测点位避免焊接损毁的挪动,确定在 初始平面内移动后的的监测点坐标后,经空间变 换得到监测点坐标理论值,从而对传感器实时获 取的监测点坐标进行校核。

(2) 成桥轴线方程参数校核

首先,通过实际监测点坐标确定实际拱肋轴 线节点坐标。在理想拱肋 BIM 模型中输入实际监 测点坐标,调整拱肋各段空间位置使监测点位与 实际监测点重合,得到实际拱肋模型,从而确定 实际轴线节点坐标。

然后,将实际轴线节点坐标进行反向的空间 变换,得到近似在初始轴线设计平面内的各节点 坐标。

随后,近似的舍去 z 轴坐标,进行后续轴线 拟合,从而计算拱轴系数、净跨、矢高等各类参 数并判断是否符合规范及设计要求^[8]。

根据拟合轴线计算实际轴线坐标误差值,可判断其误差类型并作为调整方案依据。具体拱轴线误差有局部突变、正对称及反对称三种类型。调整方案如下:①局部突变,可简单通过调整缆索修正;②正对称,拱端水平推力变换可忽略,拱中弯矩增加较小,失稳风险较小;③反对称,拱端水平推力变换可忽略,拱中弯矩增加较小,轴线平面内误差易造成失稳^[9]。施工中应对反对称偏差严格控制。

拱肋施工误差校核具体流程如图 5 所示。

Journal of Information Technology in Civil Engineering and Architecture

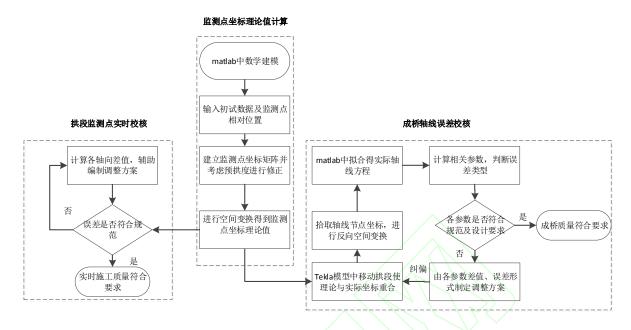


图 5 监测点实时坐标及轴线相关参数误差校核流程图

4 案例分析

本工程为武汉市汉阳某拱桥,如图6所示。该桥梁全长928m,桥型设计为2×(5×30m)先简支后结构连续预制组合小箱梁+(48m+196m+48m)跨钢箱型拱桥+(6×30m+5×30m)先简支后结构连续预制组合小箱梁。

图6 该拱桥效果图

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

19600

196000

196000

196000

196000

196000

196000

196000

196000

196

图7 该拱桥立面图

主拱采用等截面钢箱型提篮拱,拱肋向内倾斜,与竖向成10°夹角;主拱矢高ƒ=43.556m,矢跨比ƒ/L=1/4.5,拱轴线为悬链线,拱轴系数m=1.6,如图8所示。竖平面内主拱拱轴线悬链线方程见公式(4-1)。其中坐标系原点定义为拱顶,坐标系方向定义为:顺桥向为x轴,指向拱脚为正;铅垂方向为y轴,向下为正。

$$y = \frac{f}{m-1}(chk\varepsilon - 1) \tag{4-1}$$

式中: f—— 拱肋计算矢高,f = 43.556m;

m—— 拱轴系数, m = 1.6;

k—— 参数, $k = \ln(m + \sqrt{m^2 - 1})$ = 1.04697;

Journal of Information Technology in Civil Engineering and Architecture

ε —— 参数, $\varepsilon = x/98$ 。

由于设计上可能的误差,该类空间复杂异形 拱桥的施工质量也更加难以保证。为尽量减少设 计图纸错误及准确计算施工过程中产生的偏差, 并及时纠偏,以下就该项目这两方面的相关参数 进行校核,并分析其误差。

4.1 数学建模对设计轴线节点坐标校核

由于结构对称, 仅取一半结构进行校核, 每

侧设置 A0 至 A12 共 13 个节点,选择汉口侧 S1 段对轴线节点坐标校核,设汉口侧下游半段拱肋为 S1,上游半段为 S2 如图 8 所示。

首先在空间坐标系中建模,在矩阵(2-1)中取 n=13,将公式(4-1)代入f(x),得到各节点坐标矩阵,随后乘以各旋转与平移的坐标变换矩阵进行空间坐标变换,得理论值后计算节点设计值误差,在 matlab 工具中编写上述计算过程。

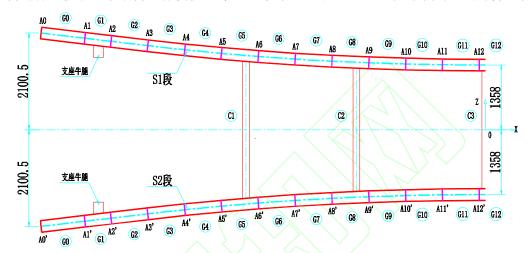


图 8 S1、S2 段节点分布图

在matlab中可以同时添加初始平面轴线方程 (4-1)、轴线节点坐标理论值以及图纸设计值绘制的轴线图像(如图9所示),该图中以汉口至阳逻方向为x轴正向,拱轴线未经空间变换前凹口朝向为y轴正向,z轴正向为向上垂直x,y轴所在平面。

S1段轴线变换前后及设计轴线图形对比

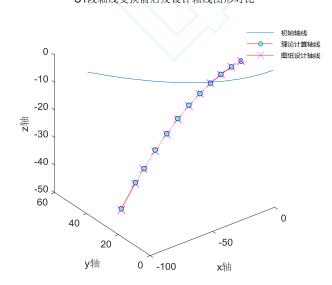


图 9 S1 段拱肋轴线变换前后对比图

结果误差分析:

轴线节点设计值的节点坐标误差均控制在 30mm 左右,满足《城市桥梁工程施工与质量验收规范》CJJ 2-2008 中误差要求,因此该桥轴线节点坐标设计较为精准。

4.2 基于 BIM 的拱段设计尺寸校核(拱段上下边长)

以 S1 段为例,根据图 4 相关流程,计算得出各轴线节点坐标并作辅助点输入 tekla,以各辅助点及截面尺寸在 tekla 中建立拱肋理想模型,如图 10 所示。拾取模型中各拱段上下边长可得尺寸理论数值,随后对图纸尺寸进行校核。

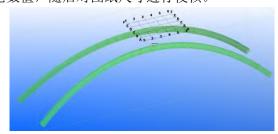


图 10 Tekla 由拱肋计算坐标建模

Journal of Information Technology in Civil Engineering and Architecture

	G0	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
计算上边	12840.56	7365.1	9958.45	9570.2	9236.43	8953.04	8716.41	8523.37	8371.18	8257.63	8181.04	8140.21	2600
计算下边	12572.96	7199.36	9719.96	9325.62	8986.65	8698.99	8458.91	8263.17	8108.98	7994.03	7916.52	7875.23	2600
设计上边	12761.7	7385.7	9956.4	9570.2	9236.4	8953.1	8716.5	8523.4	8371.2	8257.7	8181.1	8117.9	2687.9
设计下边	12653.8	7187	9722	9325.6	8986.6	8698.9	8458.8	8263.1	8108.9	7994	7916.4	7897.5	2512.1
尺寸差异	-78.86	20.6	-2.05	0	-0.03	0.06	0.09	0.03	0.02	0.07	0.06	-22.31	87.9
	80.84	-12.36	2.04	-0.02	-0.05	-0.09	-0.11	-0.07	-0.08	-0.03	-0.12	22.27	-87.9
误差	-0.00614	0.002797	-0.00021	0	-3.2E-06	6.7E-06	1.03E-05	3.52E-06	2.39E-06	8.48E-06	7.33E-06	-0.00274	0.033808
	0.00643	-0.00172	0.00021	-2.1E-06	-5.6E-06	-1E-05	-1.3E-05	-8.5E-06	-9.9E-06	-3.8E-06	-1.5E-05	0.002828	-0.03381

表 1 阳逻侧 S1 拱段上下边长误差计算(除最后一栏单位: mm)

注:表中尺寸差异=设计值-计算值;误差=尺寸差异/计算值

在 matlab 中计算图纸拱段尺寸误差得表 1。 误差分析:

除少数拱段由于安装需预留一定空间等原因 另做尺寸调整导致较小误差,G2-G10 段拱肋上下 边长尺寸均满足《城市桥梁工程施工与质量验收 规范》CJJ 2-2008 误差要求,该项目拱段尺寸设计 精度较好。

4.3 实时校核监测点坐标

对 S1 段各拱段的 2,3 监测点实测坐标进行校核。在本工程实例中,实际监测点沿拱段向拱底 平移 0.2m, 其布置位置如图 11 所示。

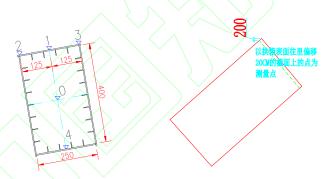


图 11 监测点在拱段截面位置及侧向位置的示意图

取各拱段右端截面处 2,3 位置原始平面坐标,计算其沿拱段向拱脚方向平移 0.2m 后的平面坐标值,随后进行坐标空间变换及坐标系变换可得理想监测点位置坐标。考虑拱肋施工预拱度,将理想坐标加上预拱度修正值,与测量实际值相减计算偏差。各拱段的 2,3 点位施工偏差,沿拱脚向拱顶逐渐积累,由 G0~ G11 段渐渐增大,其偏差值控制在 30mm-100mm 之间,其中 G9 及 G10 段超过相关规范要求。所以应立即进行纠偏工作。

4.4 利用 bim 技术辅助拟合成桥轴线方程

为校核工程整体施工误差,需根据各点位实 测坐标拟合成桥轴线方程。基于 4.2 节中的 tekla 理想拱段模型,并以各段2、3监测点位实测坐标作辅助点导入该模型。模拟施工过程如下:

- 1、控制拱脚段两端监测点位与对应辅助点重合:
- 2、控制各待安装段后端截面与以施工段截面 下边重合;
- 3、控制各待安装段前端 2、3 监测点位与对应位置辅助点重合,得到实际拱肋模型。

完成上述步骤得到如图 12 所示的 G3~G5 段 实际监测点位置的示意图。随后进行成桥轴线拟合。

Journal of Information Technology in Civil Engineering and Architecture

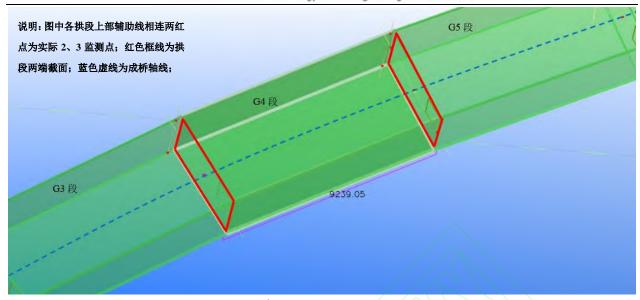


图 12 S1 段 G3~G5 拱段实际监测点位置及拼装后模型

做辅助线拾取轴线上各节点坐标的实际值,在 matlab 中将坐标值逆向变换后,得到近似在一个平面上的各节点坐标,各点 z 坐标与 x,y 坐标之比均小于 10⁻⁵,因此近似的认定所有点均在同一平面内。根据 x,y 坐标值在 matlab 中绘图得到拱肋的拟合轴线如图 13 所示,坐标轴方向同图 9。

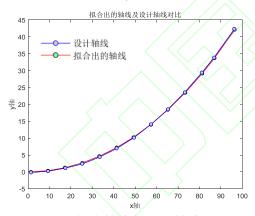


图 13 S1 段拟合轴线与设计轴线对比

加载 matlab 的 curve fitting 工具进行拟合,接设计轴线方程输入所需方程形式。选择所需 xdata、ydata 为上述转换后计算所得 x、y 坐标行向量,自动求解系数。由原始设计轴线方程(4-1)计算式中拱轴系数 m (m 与拱的拱度有关,在几何上则反映拱轴线的曲率),解得m实际值为1.534。由拟合轴线计算其净跨为 169.04 m,净矢高为43.51 m。由拟合轴线方程计算得各对应监测点位坐标,与实际点位差值在 26mm 以内,同理可得 S2 段该项误差在 24mm 以内,误差形式呈正对称。

误差分析:

设计所用拱轴系数 m=1.6, 拱轴系数误差在 0.05%内; 净跨度误差 40mm; 净矢高误差 46mm,

其设计参数均小于规范与设计要求。同时两侧拟合轴线对应监测点位误差差值大小也均小于规范要求并为正对称,对拱增加的两端水平推力与弯矩较小。如图 13,监测点坐标绘制的曲线总体上也与设计轴线吻合,该项目实际轴线线型控制较好。

5 结论

基于 BIM 的复杂空间异形钢拱桥拱肋校核方法建立在 BIM 技术及 matlab 等工具的基础上,包括对施工前设计图纸数据的比对校核及拱段实时施工监测点坐标、实际轴线方程系数校核两大部分,为该类工程的校核问题提供一种直观且简便的方法。

目前该方法对于空间异形钢拱桥有以下几方面的应用及发展前景:

- (1)根据设计轴线方程、节点位置数学建模可计算出拱桥在进行任意空间旋转、平移后的轴线节点理论坐标,辅以 BIM 建模得到各拱段理论尺寸,从而校核设计图纸;
- (2) 同样数学建模可得到实际监测点位置的理论坐标,从而校核实时拱段施工位置,指导后续施工。随后,通过 BIM 技术模拟施工过程可得到实际拱轴线方程,进而便于评价检验施工质量;
- (3)通过校核各实际监测点误差,可得到实际监测点偏移大小与方向。实际施工时往往调整拱段端部的控制点却较为便利,因此在本文基础上可以继续探索通过 MIDAS Civil 等有限元工具[10][11]等手段,由实际监测点误差计算控制点的控制方案,并利用 matlab 或 c++等工具数学建模可

Journal of Information Technology in Civil Engineering and Architecture

形成一套通用的校核程序等内容。

参考文献

- [1] 《中国公路学报》编辑部.中国桥梁工程学术 研 究 综 述 2014[J]. 中 国 公 路 学报,2014,27(5):1-96.
- [2] 田仲初,陈得良,颜东煌,陈政清.钢箱提篮拱桥施工控制的关键技术研究[J].中国公路学报,2004(3):49-53.
- [3] 徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000.
- [4] 陈宝春.钢管混凝土拱桥施工问题研究[J].桥 梁建设,2002(3):55-59.
- [5] 向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001.
- [6] 林天然. 大跨度钢箱提篮拱桥施工控制研究 [D].杭州: 浙江大学,2014.
- [7] 郭鹏. 中承式钢管混凝土系杆拱桥施工控制及参数敏感性分析[D]. 合肥: 合肥工业大学,2016.
- [8] 杨玉国. 拱桥拱圈悬链线方程推导和拱轴系数的判定分析[J]. 铁道建筑技术, 2018, (0z1):121-123,168.
- [9] 陈新炎. 拱轴线偏差对箱形拱桥结构行为的 影响及对策研究[D]. 重庆: 重庆交通大学,2014.
- [10] 郭金亮,栗超,曹忠良.大跨度上承式钢管混凝土 拱 桥 拱 肋 吊 装 施 工 控 制 [J]. 公路,2017,62(9):179-185.
- [11] 陈少峰. 钢管混凝土拱桥施工监控方法研究及工程应用[D].北京: 北京工业大学,2007.